

Gray Quadrangle, Maine Surficial geologic mapping by Thomas K. Weddle **Robert G. Marvinney** Digital cartography by: Cartographic design and editing by: **Robert A. Johnston** State Geologist **Robert D. Tucker** Funding for the preparation of this map was provided in part by the U.S. Geological Survey STATEMAP Program, Cooperative Agreement No. 1434-95-A-01364. Open-File No. 97-58 **Maine Geological Survey** 1997 Address: 22 State House Station, Augusta, Maine 04333 **Telephone:** 207-287-2801 **E-mail:** mgs@maine.gov

HOLOCENE DEPOSITS

- Stream alluvium Gray to brown fine sand and silt with some gravel. Comprises flood plains along present streams and rivers. Extent of alluvium approximates are as of potential flooding.
- Freshwater wetlands Muck, peat, silt, and sand. Poorly drained areas, often with standing water.

PLEISTOCENE DEPOSITS

- Braided-stream alluvium Pleistocene alluvium consisting of fluvially deposited sand and gravel formed during the marine
- Marine shoreline Pleistocene beach and dune sands deposited during the regressive phase of marine submergence. Beach morphology is poorly preserved, but sand and gravel are present along the ridge crest.
- Marine nearshore deposits Pleistocene gravel, sand, and mud deposited as a result of wave activity in nearshore or shallowmarine environments; not associated with beach morphology.
- **Presumpscot Formation** Massive to laminated silty clays with rare dropstones and occasional shelly horizons, which overlie rock and till, and are interbedded with and overlie end moraines and marine fan deposits; includes sand deposited as a distal unit of submarine fans.

- Marine ice-contact delta Glacial-marine delta composed primarily of sorted and stratified sand and gravel. Deposit was graded to surface of late-glacial sea and is distinguished by flat top and foreset and topset beds. Deltas have been assigned a unique geographic name listed below:
 - Pmdng New Gloucesterdelta Pmdsp - Sabbathday Ponddelta
 - Pmdcl Crystal Lake delta Pmdlh - Libby Hill delta

Quadrangle Location

- Pmdg - Gray delta Pmdeg - East Gray delta Pmdgm - Gray Meadow delta
- Submarine outwash fans Fan-shaped glacial-marine sand and gravel accumulations formed at the mouth of subglacial tunnels along the receding late Pleistocene ice margin. The sand and gravel is interbedded with and overlain by Presumpscot Formation clays at the distal edges of the fans, and interlayered with and overlain by tills at their ice-contact faces. Some fans, or group of fans have
 - been assigned a unique geographic name listed below: Pmfm - Morse Road fan
 - Penny Road fan Pmflb_x - Libby Brook fans 1 to 3
 - Intervale fans 1 to 2 Pmfml - Meadow Lane fan
- Glacial outwash fans and plains sand and gravel deposits comprised of alluvial fans and fan-shaped plains with large boulder and cobble clasts nearer the fan apex.
- Ice-contact deposits Sand and gravel deposited against remnant masses of glacial ice; massive to well stratified; commonly has collapse features and irregular topography.

Till-Gravelly to bouldery, sandy-matrix diamicton.

Thin-drift areas - Areas with generally less than ten feet of drift covering bedrock. Till overlies bedrock on hillslopes and ridge crests; Presumpscot Formation silty clay is present in depressions; and nearshore deposits overlie till, Presumpscot Formation, and bedrock on hillslopes and at the base of these slopes. Small rock outcrops, and areas of numerous small outcrops are shown as solid

gray areas.

Contact - Indicates boundary between adjacent map units, dashed where approximate.

CONTOUR INTERVAL 10 FEET

- Glacial striation or groove Arrow shows direction of formerice movement. Dot marks point of observation.
- Streamlined hill Hill shaped by glacial processes and reflecting regional ice flow.

End moraine - Ridge of till, sand, and gravel deposited and/or

Illiminim Ice margin position - Line shows approximate position of ice margin during glacial retreat (shown only for major positions).

deformed by glacialice.

- Letters refer to map unit deposited when ice margin stood at each
- Stream terrace scarp Scarp separating different levels of stream terraces. Hachures on downslope side.
- located. Sites where valid radiocarbon ages were obtained also are shown. _{10,150±450} Non-marine fossil locality - Indicates site where non-marine

10,150±450 **Marine fossil locality** - Indicates site where marine fossils were

- fossils were located. Sites where valid radiocarbon ages were obtained also are shown. Glaciomarine delta - Elevation (in feet) of contact between topset
- and foreset beds in glaciomarine delta, which indicates former position of sea level.
- Paleocurrent trend Direction of current flow, inferred from dip
- <><< Esker Gravel and sand deposited in an ice tunnel by subglacial meltwater stream. Chevrons point in direction of stream flow.

Kettle - Depression on surface of stratified drift deposit where ice

Photo locality - Location of photographed site shown and

blockburied by drift subsequently melted. → Meltwater channel - Channel eroded by meltwater or later meteoric runoff.

described in map legend.

OTHER SOURCES OF INFORMATION

USES OF SURFICIAL GEOLOGY MAPS

(commonly called hardpan), sand and gravel, or clay, which overlie solid ledge

(bedrock). Bedrock outcrops and areas of abundant bedrock outcrops are

shown on the map, but varieties of the bedrock are not distinguished (refer to bedrock geology map). Most of the surficial materials are deposits formed by

glacial and deglacial processes during the last stage of continental glaciation,

which began about 25,000 years ago. The remainder of the surficial deposits

are the products of postglacial geologic processes, such as river floodplains, or

features, deposits, and landforms as described in the map explanation. Features

such as striations and moraines can be used to reconstruct the movement and

position of the glacier and its margin, especially as the ice sheet melted. Other

ancient features include shorelines and deposits of glacial lakes or the glacial

sea, now long gone from the state. This glacial geologic history of the

quadrangle is useful to the larger understanding of past earth climate, and how

our region of the world underwent recent geologically significant climatic and

environmental changes. We may then be able to use this knowledge in

anticipation of future similar changes for long-term planning efforts, such as

maps such as surficial materials maps or significant sand and gravel aquifer

maps for anyone wanting to know what lies beneath the land surface. For

example, these maps may aid in the search for water supplies, or economically

important deposits such as sand and gravel for aggregate or clay for bricks or

pottery. Environmental issues such as the location of a suitable landfill site or

the possible spread of contaminants are directly related to surficial geology.

Construction projects such as locating new roads, excavating foundations, or

siting new homes may be better planned with a good knowledge of the surficial

geology of the site. Refer to the list of related publications below.

Surficial geology maps are often best used in conjunction with related

The map shows the areal distribution of the different types of glacial

are attributed to human activity, such as fill or other land-modifying features.

A surficial geology map shows all the loose materials such as till

- 1. Weddle, T. K., 1997, Surficial geology of the Gray 7.5-minute quadrangle Androscoggin and Cumberland Counties, Maine: Maine Geological Survey, Open-File Report 97-73, 10 p.
- 2. Weddle, T. K., 1999, Surficial materials of the Gray quadrangle, Maine: Maine Geological Survey, Open-File Map 99-61. 3. Neil, C.D., 1999, Significant sand and gravel aquifers of the Gray quadrangle,
- Maine: Maine Geological Survey, Open-File Map 99-24. 4. Thompson, W. B., 1979, Surficial geology handbook for coastal Maine: Maine
- Geological Survey, 68 p. (out of print) 5. Thompson, W. B., and Borns, H. W., Jr., 1985, Surficial geologic map of Maine: Maine Geological Survey, scale 1:500,000.

the natural resources.

coastal development or waste disposal.